Finding good nearly balanced cuts in power law graphs

نویسنده

  • Kevin Lang
چکیده

In power law graphs, cut quality varies inversely with cut balance. Using some million node social graphs as a test bed, we empirically investigate this property and its implications for graph partitioning. We use six algorithms, including Metis and MQI (state of the art methods for finding bisections and quotient cuts) and four relaxation/rounding methods. We find that an SDP relaxation avoids the Spectral method’s tendency to break off tiny pieces of the graph. We also find that a flow-based rounding method works better than hyperplane rounding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of n-distance balanced graphs in distributing management and finding optimal logistical hubs

Optimization and reduction of costs in management of distribution and transportation of commodity are one of the main goals of many organizations. Using suitable models in supply chain in order to increase efficiency and appropriate location for support centers in logistical networks is highly important for planners and managers. Graph modeling can be used to analyze these problems and many oth...

متن کامل

Gary Froyland * and Eric Kwok Partitions of networks that are robust to vertex permutation dynamics

Abstract:Minimumdisconnecting cuts of connected graphs provide fundamental information about the connectivity structure of the graph. Spectral methods are well-known as stable and efficient means of finding good solutions to the balanced minimum cut problem. In this paper we generalise the standard balanced bisection problem for static graphs to a new “dynamic balanced bisection problem”, in wh...

متن کامل

Finding Almost-Perfect Graph Bisections

We give a polynomial time algorithm that given a graph which admits a bisection cutting a fraction (1 − ε) of edges, finds a bisection cutting a (1 − g(ε)) fraction of edges where g(ε) → 0 as ε→ 0. One can take g(ε) = O( 3 √ ε log(1/ε)). Previously known algorithms for Max Bisection could only guarantee finding a bisection that cuts a fraction of edges bounded away from 1 (in fact less than 3/4...

متن کامل

Random Evolution in Massive Graphs

Many massive graphs (such as WWW graphs and Call graphs) share certain universal characteristics which can be described by socalled the “power law”. In this paper, we will first briefly survey the history and previous work on power law graphs. Then we will give four evolution models for generating power law graphs by adding one node/edge at a time. We will show that for any given edge density a...

متن کامل

RIMS - 1731 Covering Cuts in Bridgeless Cubic Graphs

In this paper we are interested in algorithms for finding 2-factors that cover certain prescribed edge-cuts in bridgeless cubic graphs. We present an algorithm for finding a minimum-weight 2-factor covering all the 3-edge cuts in weighted bridgeless cubic graphs, together with a polyhedral description of such 2-factors and that of perfect matchings intersecting all the 3-edge cuts in exactly on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004